Molecular Complexes. Part I. The Crystal and Molecular 897. Structure of the 1:1 Adduct of Benzotrifuroxan and 13,14-Dithiatricyclo[8,2,1,1^{4,7}]tetradeca-4,6,10,12-tetraene

By B. KAMENAR and C. K. PROUT

The structure of the 1 : 1 π -complex of the 13,14-dithiatricyclo[8,2,1,14,7]tetradeca-4,6,10,12-tetraene (DTTD) and benzotrifuroxan has been determined by a three-dimensional method. The crystals are formed from planeto-plane stacks in which pairs of thiophen donor groups of the DTTD molecules alternate with the electron-acceptor molecule, benzotrifuroxan. The DTTD has the trans or step-like form predicted from spectroscopic evidence, and in the benzotrifuroxan the furoxan systems have the expected furazan N-oxide form.

HEXANITROSOBENZENE or benzotrifuroxan (I) was first prepared by Turek¹ in 1931 but little was known about it until Bailey and Case² in 1958 showed that it formed, with aromatic hydrocarbons, a series of complexes of great stability. However, there was little or no physical or chemical evidence of its structure. At this time, Powell and Chantry³ made a preliminary two-dimensional study of benzotrifuroxan, but abandoned it after having shown that the crystals were orthorhombic, a = 6.90, b = 19.49, and c =6.49 Å with the non-centrosymmetric space group $Pna2_1$.

Molecular complexes of benzotrifuroxan with an aromatic hydrocarbon system containing a heavy atom were then considered. In the preliminary work of Powell and Chantry,³ when the heavy atoms were placed on the periphery of the hydrocarbon systems in α -bromonaphthalene and p-bromoaniline complexes, it was not possible to locate these atoms by two-dimensional methods. Powell and Prout ⁴ examined the structure of the complex of bis-8-hydroxyquinolinatocopper(II) and benzotrifuroxan but, unfortunately, after a detailed X-ray structure analysis, it appeared that the benzotrifuroxan was disordered. Several complexes with sulphur-containing aromatic compounds were prepared. The complexes with benzthiophen and 13,14-dithiatricyclo[8,2,1,14,7]tetradeca-4,6,10,12-tetraene (II) (DTTD) seemed the most suitable for structural work, though both crystals gave rather poor diffraction patterns. The latter was chosen because of the additional interest of the sulphur derivative.

If DTTD (II) has a centre of symmetry, as suggested by Winberg *et al.*⁵ from a consideration of the lack of coincidences of the fundamentals of the Raman and infrared spectra and those of its oxygen analogue, then it must be either planar (D_{2h}) or have a *trans* or step-like structure (C_{2h}) (III). The step-like structure is the more probable, since it allows longer sulphur-sulphur contacts. With the benzotrifuroxan, it may lead to a

¹ O. Turek, Chimie et Industrie, 1931, 26, 785. ² A. S. Bailey and J. R. Case, Tetrahedron, 1958, 3, 113.

³ H. M. Powell and D. Chantry, personal communication.
⁴ H. M. Powell and C. K. Prout, J., 1965, 4882.
⁵ H. E. Winberg, F. S. Fawcett, W. E. Madel, and C. W. Theobold, J. Amer. Chem. Soc., 1960, 82, 1428.

TABLE 1

Observed structure amplitudes and calculated structure factors for (hkl)

h	k	l	$5 F_0 $	$5F_{\mathbf{c}}$	h	k	l	$5 F_0 $	$5F_{ m c}$	į	h	k	l	$5 F_{o} $	$5F_{c}$
0	0	3	170	-164			3	94	89				10	5 6	-58
		5	240	238			4	29	14		I	-5	-5	62	50
		6	35	-0				59	-00				-4	53	_55
		7	94	-103			7	90 86	-00				-3	79	-11
			104	• 5			å	ICÓ	150				-ī	74	-6r
		12	78	-83	Ó	4	-12	110	-94				0	86	104
		13	51	-52		•	-11	74	55				3	I 34	-155
		14	37	-37			-10	62	42				5	38	41
0	I	-1 2	92	80			-9	60	-43				7	123	-142
		-10	75	58			- 8	98	-77				8	64	-70
		-9	59	42			-6	 ∩⊺	78		-		10	53	31
		-ó	52	-4			-5	98	100		-	-4	·	59	
		-5	207	190			-4	39	44				-2	46	-38
		74	190	211			-3.	60	-55				~1	34	-55
		-3	83	74			-2	119	-122				0	83	-83
		-2	360	467			-1	102	212				I	III	-127
		1	333	-373			2	99 140	-1 58				د ۲	95	94 00
		3	174	11			4	128	105				Ğ	92	-85
		4	75	90			5	43	54				8	131	144
		5	126	-118			7	67	48				II	80	-76
		6	102	-92		_	8	51	-51				I 3	139	134
		7	48	51	Ð	5	-11	72	-6r		л. Т	-3	-8	89 112	-93
		9	45	-35				46	44				-6	113	IIS
		10	67	-63			-3	45	43				-5	43	-42
0	2	-11	114	114			-2	126	129				-4	128	-107
		-10	43	47			0	64	-76				-2	62	-5 I
		-9	142	-1 38			I	62	-61				•	•46	101
		-8	115	-114			2.	7.8	90				2	3.2	
		-7	130	117			4	37	-37				3	91	93
			21	-14			5	114	-109				4	84	67
		-4	263	-324		4	7	62	67				5	87	-94
		-3	30	37	0	0	-12	48	70				6	100	IOI
		-2	216	-224			-0	51	-53				7	95	93
		-1	74	74			-8	51	56				à	22	-81
		ī	231	94 245			-7	70	86.				LI	127	124
		3	107	-45			-6	37	32				12	99	101
		4	95	-107			_5	99	-101				13	87	-83
		б	54	-26			-4	30	34				14 •6	77.	-71
		7	82	85			-2	62	-63		T	-2	-11	50	- = = =
		ĝ	134	-123			- 1	50	-50		-	-	-10	53	- <i< td=""></i<>
		IÓ	138	125			0	37	51				-9	44	51
		II	80	IOS			2	33	23				-8	170	177
0	3	-12	74	61		-5	3	02	-75				-7	50	52
		-11	129	-131	-			40 120	-44 1/2				-0	115	-103
		-8	171	162			-2	123	108				- <u>^</u>	104	101
		-7	49	46			- 1	55	-53				-3	270	258
		-6	263	-282			I	54	-31				-ī	28	<u>-</u> 4
		-5	210	-229			2	69	58				0	1 53	-117
		- 2	49	51			د ۸	82	-86				I	239	330
		-2	III	53 -104			5	100	-110				2	194 6 c	~39 -62
		-1	136	-112			ž	110	103				4	. 50	- 3 17
		I	144	1 57			8	82	79				Ġ	ă3	-73
		2	79	- 7 I			9	55	-57				7	94	102

Kamenar and Prout:

TABLE 1 (Continued)

h	k	l	$5 F_{\rm o} $	$5F_{\rm c}$	h	k	l	$5 F_{o} $	$5F_{c}$	h	k	l	$5 F_{o} $	$5F_{\rm G}$
r	~r	8 -15 -13 -11 -9 -7 -5	82 42 85 52 65 109 156	-67 -42 70 54 -55 101 152	I	2	5 8 9 10 11 -14	84 79 77 63 43 62 37	-48 16 -80 -80 58 77 34	r	5	3 9 -15 -14 -11	133 35 73 39 35 80 52	121 -50 -89 -44 -25 73 -57
		-4 -3 -2 -1 1 2 3	32 152 42 100 55 222 43	-45 168 -17 86 49 -340 -41			-12 -11 -10 -9 -8 -7 -6	43 92 45 137 167 152 237	-56 -86 47 116 144 -147 -242			-9 -7 -5 -4 -2 -1	45 155 104 95 55 46 . 66	-47 158 -85 -85 23 46 63
		4 5 6 8 9 10 12	208 47 91 82 49 102	59 224 -65 -98 110 32 -109			-4 -32 -10 123	143 124 152 220 117 227 173 216	128 131 -154 -204 -106 247 163 -210	I	б	2 -12 -11 -9 -8 -7 -6	95 26 37 91 45 73 83	-79 -25 -35 106 -68 -83
I.	0	-14 -15 -14 -13 -12 -10 -9 -8	70 26 37 119 113 220 50	55 76 20 -41 -113 103 191 -39	I	3	4 56 7 -12 -10 -9	95 56 82 51 58 69	-50 -96 -44 47 54 366 -69	2	-7	-3 -2 -1 1 2 3 4	37 73 45 42 79 29 73	90 31 -83 -51 33 92 -40 -98
		-7 -5 -5 -4 -3 -2 I	199 81 32 157 168 66 158	-208 -69 37 -188 185 -79 -186			-8 -7 -6 -5 -4 -3 -2	144 29 149 91 36 158 115	-136 32 139 -108 -40 -172 -95	2	-6	6 7 8 9 -1 2 3	42 82 29 42 29 137 76	40 84 -22 -51 20 -133 -78
		2 3 4 5 6 7 8 9	134 88 39 130 104 38 79 37	-135 -86 -110 -92 7 92 -13			0 1 2 4 5 6 7	207 241 147 236 193 43 35 46	205 246 -116 -235 197 66 -41 -50	3	- 5	4 5 7 8 9 5 4 - - 4 2	134 100 78 82 39 34 145	75 138 -105 -79 88 -35 -32 -133
I	I	10 12 -12 -11 -10 -8 -7 -6 -5	141 140 59 52 39 217 34 135 225 72	-143 103 68 49 -32 -248 -55 128 206	I	.4	8 9 -18 -17 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15	572 296 254 543 480	5556910 -595910 -595779			-1 2 3 4 5 6 8 0 12	36 25 36 39 104 111 75 41 42	-39 20 92 38 38 -97 -122 64 -39 48
		-32 HOH234	174 293 271 134 195 136 101 135	213 -322 -302 199 -207 133 -142 121			-5 -4 -3 -1 -1 0 1 2	91 89 74 65 68 151 57	83 96 47 -70 -139 42 50	2	- 4	13 -10 -9 -8 -7 -5 -5 -4	42 42 93 48 90 93 31 179	62 45 -97 -44 58 101 -29 -202

h	k	l	$5 F_{o} $	$5F_{f c}$	h	k	l	$5 F_{o}$	$ 5F_{o}$	r	h	k	l	$5 F_{o} $	$5F_{c}$
	-	-3	100	-83			-8	104	-109				-10	45	62
		-2	1 96	241			-7	29	-7				-9	51	40
		-1	145 122	-128				45	-30				-7	108	-55
		Ĩ	149	-157			-4	137	94 100					68	6
		2	34	-20			-3	119	-131				-3	57	76
		3	19	-32			-2	211	284				-2	30	52
		4	IOI	95			2	268	-290				-1	160	I 58
		5	67	69			3	57	-47				0	74	-58
		7	37	-23 -6r			4	93	-70				I	55	-54
		8	4 6	88			3 7	180	221				20 A	180 180	183
		IO	60	50			8	59	29				Ğ	126	-110
		II	39	50			9	52	-30		2	3	-1 5	82	102
		12	42	-54			IO	210	~ 1 92				- 13	73.	-79
		13	29	-31			12	78	60	•			-10	90	99
		15 76	39	51	2	~	13	42	50	۱ ۱			-7	72	05
2	-3	-11	43	-45	-	v	~14	42 6 -	-71				- <	57	-63
	Ű	-9	75	82			-12	72	66				-ī	96 96	-8Ğ
		-3	57	42			~1 I	119	119				0	39	-35
		-7	56	-7 I			-10	148	-148				r	33	32
		-0	72	-50			-9	74	-50				2	69	80
		- <u>^</u>	226	256			-6		-45				4 5	30	-51
		-3	198	249			-5	192	-181				8	42	54 56
		-2	109	-100			-4	307	-334				ġ	51	Ğ5
		-1	110	-104			-3	107	100		2	4	-1 5	27	-33
		0	III	-103			-2	301	-326				-13	42	47
		I	249	285			0 T	50	22				-12	03 6 r	42 -62
		3	199 61.	-50			4	67	-55				-0	121	-106
		4	88	-ĕ3			5	130	138				~ 8	27	26
		5	83	-87			6	30	-74				-7	90	100
		6	176	151			7	51	-44				_5	131	-141
		7	143	8			0	40	-51				-4	25 - 8	37
		10	37	-34			10	88	94				-ī	66	-81
		II	48	-44			II	92	91		2	5	-12	50	-48
		12	4 I	48	2	I	~12	49	-36			-	-7	125	-145
2	-2	-13	5 I	5 ⁶			-11	104	-95				-6	72	-72
		-8	25	• 9 2 • 9 6			-10	43	-31				-5	117	119
			78	-100			-7	86	-70				4	59	-37
		-4	73	67			-6	123	-110				õ	79	83
		-3	117	-117			-4	1 53	140				I	73	87
		-2	1 49	142			-3	181	176				2	66	-62
		-1	120	-125			-2	97	-78		2	6	_5	43	46
		- U - T	T 28	19			0	97 06	102		~	Ŭ	-8	29	-35
		2	54	* 3 I 2 2			ĩ	236	228				-7	72	40
		4	117	116			2	74	57				-6	66	δī
		5	84	58			3	164	-138				- 4	5 I	-39
		6	131	-140			4	98	-74 86		2		-1	41	28
		10	250	-274			2 6	183	105		ാ	-1	-1	40	-30
		11	43	-5I	2	2	-16	61	-81				ĩ	34	36
		12	41	-42			-1 5	61	-62				3	93	- 9ó
2	-1	-14	75	72			~1 4	73	87				4	58	63
		-12	64	-85			-13	66	62				5	82	89
		-0	14 25	114 10			-12 -17	29 27	-37				7 8	7.00	-95
		7	~ 5	40				41	41					12	50

Kamenar and Prout:

TABLE 1 (Continued)

h	k	l	$5 F_{\rm o} $	$5F_{ m c}$	h		k	l	$5 F_{\rm o} $	$5F_{\mathbf{c}}$	h	k	l	$5 F_{\rm o} $	$5F_{ m c}$
3	-6	9 10 -7 -5	38 46 91 48	60 47 -85 60	3	5	-2	7 8 -13	172 94 101 68	-154 93 86 -66			4 56 7	81 62 103 77	67 54 -92 -76
		-4	34	43	-			-12	117	-119			9	82	98
		-3	89 89	~79				-9	65	61	3	2	-14	54 49	43 34
		0 3	98 68	85 57				-8 -6	75 46	-65 úi			-13 -12	85 75	-84 -64
		5	98	-96				-4	48	48			-11	69	5Ġ
		8	57	7 S 5 9				-2	247 91	-92			-8	141	-149
		9 10	48 48	23 -28				1- 0	46 185	37 239			-7 -6	119 108	-99 106
3	-5	-7	34	56				I	85	79			-5	94	95
		-4	149	-145				3	109 109	53 104			-3	55 46	35
		-2 -1	I54 I52	140 141				4	40	-48 -83			-2 -1	4 I 78	59 72
		0	102	-91 -91				7	86	78			0 7	80	-78
		3	30 91	-30				9 12	83	-43 6 <u>9</u>			2	86	71
		7 8	65 44	-46 35	:	3	-1	-12 -11	128 58	136 33			4 5	93 70	-90
		9	57	54				-9	118	-107			6 7	80 122	81 129
3	-4	-11	93 82	83				-5	163	-179			9	83	-82 -26
		-10 -9	48 47	-50 -54				-4 -3	128 73	-130 62	3	3	-14	53 68	-59
		-8	46	-55				I 2	182	-254 82			-13 -12	69 60	70
		- 4	ώ ο	50				ž	104	91			-11	47	-42
		$-3 \\ -2$	151 46	133 47				II II	74 67	53 -33			-10 -8	74 109	-60
		-1	122	-114	:	3	0	-16	44 60	45			-7	127	116
		ĩ	141	1 37				-11	44	-40			-4	70	-68
		2 3	75 188	67 -193				-9 -8	102 54	104 			-3 -2	125 28	12:1 30
		4	142	-141				-7	32 26	27. 35			-1	29 107	-28
		26	126	127				-4	110	122			I	30	50
		8 9	131 115	-119 -96				-3 -2	28	-73			2 ປ	03 48	43 -47
		IO	87	75				-1	259 176	-315 171	3	4	7	34 33	-31 -42
3	-3	-13	57	67				I	195	204		•	-5	45	48
		-12 -11	74 103	00 −98				د 4	93 103	-85			-4	90 91	-93
		-10 -9	81 69	-82 63				5 8	87 63	65 -81			-1 0	46 74	-46 86
		-4 -2	43	-79		2	Ŧ	11	59	38			I	29	23
		-2	65	15		2	-	-10	63	-54			3	109	-94
		-1	128 23	121 -32				- 9 -6	62 138	54 -141	3	5	-14	69 40	68 50
		1 2	бо 188	-51 -232				-4	IÖI	-100 61	-	•	-12	54	-49
		3	71	56				0	42	18			-7	34	-47
		4 5	99 116	11४ 120				1 2	70 62	-79 -60			-4 -3	77 34	-68 -42
		õ	149	-160				3	87	86			-2	59	71

TABLE 1 (Continued)

h	k	l	$5 F_{\rm o} $	$5F_{ m c}$	h	k l	$5 F_{\rm o} $	$5F_{ m c}$	h	k	l	$5 F_{o} $	$5F_{ m c}$
4	-7	1 3 1 2	64 50 46 33	-70 .72 51 -37		3 5 7	68 54 46	104 40 -63 62	4	3	5 -6 -5	38 38 56 50	-32 36 54 42
4	-6	3 5 8 75	65 65 33 34 58	-05 56 32 -32 -86	4	-I -I4 -I2 -II -I0	46 33 70 30	-39 39 67 -20			-3 -2 -1 0 1	142 70 72 101	-112 62 69 79
4	-5	-4 -2 1 -5 -4	74 117 106 69 73	-70 123 -81 -49 54		-8 -6 -5 -3	134 36 103 121 59	-44 -94 121 -64	4	4	3 9 -9 -7	54 22 61 55	-47 21 61 -52
		-2 -1 .2 3	96 87 26 36 45	-95 -73 61 17 45	4	-1 -1 8 10 0 -11	30 20 67 66 132	-128 -77 81 -133			-2 -1 0 1	47 33 39 101 47	-43 26 29 -81 -47
4.	-4	6 8 9 11 -9	109 76 45 82 46	104 -73 -35 81 36		-9 -3 -7 -5 -4	117 120 46 57 156	107 97 -32 79 -150	4	5	-3 -11 -9 -8 -6	27 42 51 4 ⁶ 54	39 64 -66 -44 57
·	·	-8 -6 -5 -4	100 29 54 71	100 -46 52 -44		-3 -2 8 9	155 196 45 65	-142 219 59 58	4	ó	-4 -3 -10 -9	33 38 33 30	-52 -30 -33 31
		3 4 5 7	62 65 59 107	-102 59 58 65 -104	4	10 11 1 -13 -12 -11	50 54 55 38 92	-45 -55 -57 40 96	5	- б	-8 -5 0 1	31 23 20 41 34	51 -23 -20 60 34
٩	-3	9 10 1 12 -10	85 56 82 75 144	· 85 57 -87 -67 142		-10 -9 -8 -7 -6	79 118 155 30	77 -100 -148 31	r	-r	3 4 6 8 -6	66 53 70 45	-79 -60 72 -58 -68
Ŧ	5	-8 -7 -6 -5	124 76 99 131	-118 -80 92 127		-5 -4 -3 -2	59 100 55 35	51 -93 -53 -40	2	2	-4 -3 -2 -1	50 90 62 67 65	107 72 -63 -65
		-4 -3 -2 -1	36 63 69 124 43	-49 -53 -55 120		-1 0 1 5	111 102 136 38	107 78 -139 30			2 3 8 9	45 41 43 26 37	47 25 50 33
	- 6	1 2 4 7	50 53 94 37	-62 -65 -99 38	.4	2 -14 -13 -12 -11	27 47 47 74	29 52 42 -56	5	-4	-9 -8 -7 -6	58 56 59 137	-61 -43 -63 139
4	4	-10 -9 -8 -7	40 61 29 44 43	44 -60 28 38 68		-10 -8 -6 -5 -3	111 135 71 97 196	-107 130 -70 -105 180			-5 -4 -3 -1	118 86 83 116 89	107 -72 -80 121 67
		-6 -4 -3 0	31 87 63 148 36	-52 -107 57 -240 -46		-2 -1 0 1	135 148 158 51	121 -120 -158 32			1 2 3 4	63 60 34 45	-59 -63 -39 53
		2	81	84			38	-34			5 7	39	-32 -32

Kamenar and Prout:

TABLE 1 (Continued)

h	k	l	$5 F_{\rm o} $	$5F_{ m c}$		h	k	l	$5 F_{o} $	$5F_{\mathbf{c}}$	h	k	l	$5 F_{o} $	$5F_{g}$
5	-3	8 9 -12 -10 -8 -7 -6 -5	24 36 53 26 82 48 20 128	-33 -35 23 -5 90 -26 -42 -97				-6 52 -1 1 3 48	131 77 60 96 97 49 94 53	127 74 48 98 -83 36 88 -54	6	-5	-2 -E -6 -5 -4 -3 -2	7 I 28 22 33 56 82 96 26	-58 -24 -20 38 58 -71 -87 -17
		-4 -2 -1 0 1 2 3 4	33 14 29 64 27 37 14 71	42 20 18 -80 5 68 -15 -76		5	I	-16 -15 -14 -12 -10 -8 -7 -6	49 38 24 41 31 115 54 59	51 36 -15 38 -35 104 37 -41	6	- 4	-1 1 2 -6 -5 -3 -1	87 39 135 80 67 117 85 82	87 41 -109 -74 -55 -93 73 -81
5	-2	56 7 9 -10 -7 -6 -4 -3	107 29 38 24 78 70 100 79 56	-102 20 43 -36 -68 -59 73 74 -52		5	2	-3 -2 -1 0 2 4 -17 -15 -12	86 46 107 64 111 96 45 36 41	73 -36 -99 -48 105 -92 65 -52 39	6	-3	0 1 5 6 7 -10 -97 -5	122 66 74 75 73 46 30 52 71	-121 78 -78 70 67 -43 -13 -25 -66
		-2 2 3 4 5 6 7 8	175 20 66 31 143 30 56 108	-256 -32 -84 20 162 14 -51 -105				-8 -7 -3 -2 -1 0 2 3	43 6 9 4 5 2 5 2 5 3 6 3 4 6 4 6	-32 -52 -81 -39 43 75 -69 -39			-3 -2 -1 0 1 3 4 5	43 59 42 49 21 45 28 79	13 59 42 51 24 -59 28 84
5	-1	10 1.1 -12 -11 -10 -9 -7 -6	74 37 93 68 34 90 103	-104 -60 32 88 -89	:	5	3	-12 -11 -10 -9 -7 2 -14	40 41 34 41 92 41 36	-48 -43 22 54 -78 32 -37	ό	-2	6 7 -16 -15 -14 -12	300 46 14 12 30 37	13 -49 50 -15 41 69 -58
		-5 -4 -3 -2 -1 1 2	87 109 18 79 89 24 20	74 -99 6 115 89 25 -27		5	5	-10 -9 -8 -7 -6 -5 -8	44 39 80 33 92 34 34 50	-37 -97 -30 99 46 -33 49			-11 -10 -9 -7 -6 -5 -4 -3	71 27 74 57 22 81 246 78	20 87 -73 -37 61 318 -84
		34567890	95 16 28 48 81 65 41	85 -10 -44 -31 44 78 61 -41		6 6	-8 -7	-76 -32 -2 -4 -4	41 29 28 16 33 17 30	-28 -51 25 -36 -19 -49 -31	6	-1	0 1 5 8 10 -14 -13 -12	58 59 34 19 33 19 24 20	57 57 -37 13 -39 -35 -38 27
5	o	11 -13 -11 -9 -8 -7	45 53 95 72 68 56	-54 -64 108 -77 -77 52		6	- 6	-2 16 54 -3	58 51 34 20 74 63	46 52 -22 -45 87 62			-11 -10 -9 -8 -7 -6	82 19 34 38 .40 83	92 -9 -27 -17 41 69

.

)
$h k l 5 F_{\rm o} 5F_{\rm o} \qquad h k l 5 F_{\rm o} 5H_{\rm o}$	$F_{\rm c}$ h k l $5 F_{\rm o} $ $5F_{\rm c}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

plane-to-plane stacked, "charge transfer" or polarisation-bonded complex with two donor groups alternating with one acceptor, the benzotrifuroxan.

The compound forms bright yellow needle-like crystals stable in the X-ray beam and in the atmosphere.

Crystal Data.— $H_{12}C_{18}N_6O_6S_2$, M = 472.5, triclinic pinacoidal, $a = 9.71 \pm 0.03$, $b = 8.01 \pm 0.03$, $c = 15.28 \pm 0.03$ Å, $\alpha = 102.2 \pm 0.2$, $\beta = 96.2 \pm 0.2$, $\gamma = 117.9 \pm 0.2^{\circ}$; U = 996.7 Å³, Dm = 1.566, Z = 2; Dc = 1.574, F(000) = 484; space group $P\overline{1}$ (C_i¹, No. 2); Cu-K_{\alpha} radiation, $\mu = 28.1$ cm.⁻¹; single crystal oscillation and Weissenberg photographs. Optically biaxial.

A three-dimension Patterson function sharpened to "point atoms at rest" was computed from 1192 independent reflections. By assuming the centric space group, it was possible to assign the most prominent features to sulphur-sulphur vectors and to locate the two sulphur atoms.

A three-dimensional electron-density distribution from the phases given by the positions of the sulphur atom was then computed by the use of Rollett's ⁶ FATAL (Fourier analysis testing for atomic locations) programme. Of fifty-nine maxima over about 4 eÅ⁻³ located by the programme, twenty-six could be interpreted as light-atom positions. A second cycle, in which phases from the positions of the sulphur atoms and these light atoms were used, revealed all the thirty light-atom positions, and showed one only of the first twenty-six to be in error. Positional parameters and isotropic temperature factors were then improved by use of an F_o - F_o synthesis, the resulting model giving a reliability index of 0.29. The structure was then refined by the least-squares method on the assumption of anisotropic thermal motion, and by using a block diagonal approximation to the normal matrix. In all, nine refinement cycles were computed. For the first four cycles, weights were assumed for all terms, then followed a detailed examination of the intensity values with the correction of several errors. Next, three refinement cycles were computed by using the weighting scheme

$$\sqrt{\omega} = \sqrt{\frac{1}{1 + \left(\frac{|F_o| - b}{a}\right)^2}}$$

⁶ J. S. Rollett, personal communication.

TABLE 2

Atomic co-ordinates (\times 10⁴) and standard deviations (\times 10⁴)

	x/a	$\sigma(x/a)$	y/b	$\sigma(y/b)$	z c	$\sigma(z/c)$
S(1)	2760	6	2827	6	2236	ົ່ສ໌
S(2)	6223	6	5155	6	1850	3
C(1)	3842	23	5335	24	2911	10
C(2)	2551	25	3402	23	1224	10
C(3)	3749	26	6415	25	2331	13
C(4)	3043	27	5338	28	1404	13
C(5)	6437	26	4665	25	2942	11
C(6)	5089	27	2630	23	1150	14
C(7)	5948	31	2638	33	2684	16
C(8)	5161	30	1557	28	1771	15
C(9)	4780	31	5773	30	3779	15
C(10)	6514	38	5999	30	3724	13
C(11)	2429	33	1950	35	310	16
C(12)	4081	34	2141	27	210	12
C(13)	9908	33	3536	29	3342	15
C(14)	1018	29	5540	31	3863	10
C(15)	1138	24	6973	23	3437	14
C(16)	456	25	6347	24	2411	12
C(17)	9476	25	4330	24	1927	10
C(18)	9331	26	2978	22	2473	12
N(1) [']	9682	25	1864	29	3621	12
N(2)	1946	27	6428	28	4815	14
N(3)	2171	30	8872	32	4057	16
N(4)	502	26	7538	28	1940	12
N(5)	9016	20	4217	26	1107	10
N(6)	8356	23	795	28	2015	13
O(1)	10,149	23	1645	24	4370	11
O(2)	2644	18	8376	18	4918	9
O(3)	2804	27	449	23	4018	14
O(4)	9723	21	6283	18	1063	10
O(5)	8193	21	2884	23	381	11
O(6)	8645	20	152	19	2751	10

FIGURE 1. The molecular arrangement in the crystal projected down the b axis

FIGURE 2. Part of two of the planeto-plane stacks in the crystal, projected down the *c* axis. The steplike form of the 13,14-dithiatri $cyclo[8,2,1,1^{4,7}]$ tetradecan-4,6,10,12-tetraene is clearly visible

TABLE 3

Thermal parameters (× 10⁴): the temperature factor, T, is equal to $2^{-(b_{11}h^3 + b_{22}k^2 + b_{23}l^3 + b_{13}hk + b_{13}hl + b_{23}kl)}$

	<i>b</i> ₁₁	b_{22}	b33	b_{23}	b_{13}	b_{23}
S(1)	274	$1\overline{7}7$	63	$\overline{61}$	86	$\bar{92}$
S(2)	208	195	46	30	78	160
C(1)	329	318	26	18	28	265
C(2)	442	265	24	-2	90	188
C(3)	446	363	99	200	279	676
C(4)	437	478	92	235	201	626
C(5)	429	343	46	37	104	380
C(6)	436	97	123	0	69	160
C(7)	542	656	147	255	293	1011
C(8)	513	404	113	261	100	394
C(9)	595	483	123	187	320	854
C(10)	968	465	47	119	-59	689
C(11)	561	617	115	224	109	485
C(12)	795	304	43	-27	77	325
C(13)	715	418	122	275	392	646
C(14)	518	707	2	-4	74	672
C(15)	273	120	121	-187	-146	26
C(16)	466	285	77	226	142	491
C(17)	425	354	20	103	22	14
C(18)	441	140	75	72	29	100
N(1)	467	792	116	370	88	504
N(2)	479	582	149	156	155	230
N(3)	754	869	205	575	593	1029
N(4)	567	583	85	-24	74	437
N(5)	251	671	55	-105	60	179
N(6)	430	837	133	333	287	908
O(1)	649	735	131	211	238	698
O(2)	371	277	121	-163	22	26
O(3)	901	544	258	410	654	923
O(4)	632	344	129	224	271	329
O(5)	481	657	143	260	142	231
O(6)	595	348	125	140	230	381

TABLE 4

Atomic co-ordinates (Å) referred to the orthogonal axes a, b', and c^*

	X'	Y'	<i>Z.</i> ′		X'	Y'	Z'
S(1) .	 1.259	-0.998	-3.246	C(15)	-2.069	-3.382	-4.990
S(2) .	 3.806	-2.827	-2.686	C(16)	-2.332	-3.401	-3.499
C(1).	 1.258	-2.470	-4.225	C(17)	7.264	-2.218	-2.796
C(2) .	 1.001	-1.860	-1.776	C(18)	7.546	-1.016	-3.588
C(3) .	 0.853	-3.494	-3.382	N(1)	8.123	0.288	-5.255
C(4) .	 0.721	-3.148	-2.038	N(2)	-1.298	-2.378	-6.989
C(5) .	 4.025	-1.989	-4.269	N(3)	-1.879	-4.449	-5.887
C(6) .	 3.768	-1.355	-1.669	N(4)	-2.661	-4.455	-2.812
C(7) .	 4.354	-0.675	-3.892	N(5)	6.990	-2.506	-1.606
C(8) .	 4.143	-0.317	-2.569	N(6)	7.494	0.323	-2.294
C(9) .	 1.865	-2.390	-5.485	O(1)	8.541	0.779	-6.342
C(10) .	 3.472	-2.580	-5.404	O(2)	-1.370	-3.711	-7.138
C(11).	 1.578	-1.245	-0.450	O(3)	1.915	1.486	-5.831
C(12).	 3.122	-1.421	-0.313	O(4)	6.904	-3.990	-1.542
C(13).	 7.757	-1.020	-4.850	O(5)	6.808	-1.889	-0.553
C(14).	 -1.413	-2.178	-5.606	O(6)	7.900	1.109	-3.993

where a = 34 and b = 101, the scale being that of Table 1. At this stage, hydrogen atoms at positions estimated with the aid of an $F_{o}-F_{c}$ map were added and a final two cycles of refinement were then computed without further change of weighting scheme. The final reliability index for observed reflections was 0.137. Table 1 lists the observed structure amplitudes and calculated structure factors based on the final atomic co-ordinates given in Table 2. The standard deviations are minimum values deduced from the block diagonal approximation to the normal matrix. The thermal parameters are given in Table 3. The atomic co-ordinates (in Å) in Table 4 are referred to the orthogonal axes, a, b', and c^* where c^* is the reciprocal C axis and b' lies on the same side of the ac^* plane as b. Some interatomic distances, together with standard deviations deduced from the formulæ of Cruickshank and Ahmed ⁷ are listed in Table 5. The inter-bond angles are given in

	TABLE 5		
Some interatomic distan	ices (Å) and angles (standard deviations in parenth	ieses)
(a) Within the 13,14-dithiatricyclo[[8,2,1,1 ^{4,7}] tetradeca-4,6	3,10,12-tetraene	
$\begin{array}{c} S(1){=}S(2) & \dots \\ S(1){=}C(1) & \dots \\ S(2){=}C(5) & \dots \\ S(2){=}C(5) & \dots \\ S(2){=}C(6) & \dots \\ C(1){=}C(3) & \dots \\ C(1){=}C(3) & \dots \\ C(2){=}C(4) & \dots \\ C(2){=}C(4) & \dots \\ C(3){=}C(4) & \dots \\ C(5){=}C(7) & \dots \\ C(5){=}C(10) & \dots \end{array}$	$\begin{array}{c} 3\cdot 19(0\cdot 01)\\ 1\cdot 77(0\cdot 03)\\ 1\cdot 71(0\cdot 02)\\ 1\cdot 78(0\cdot 02)\\ 1\cdot 78(0\cdot 03)\\ 1\cdot 39(0\cdot 03)\\ 1\cdot 38(0\cdot 04)\\ 1\cdot 35(0\cdot 04)\\ 1\cdot 56(0\cdot 04)\\ 1\cdot 56(0\cdot 04)\\ 1\cdot 40(0\cdot 05)\\ 1\cdot 38(0\cdot 04)\\ 1\cdot 38(0\cdot 04)\\ \end{array}$	$\begin{array}{c} C(6)-C(8) \\ C(6)-C(12) \\ C(7)-C(8) \\ C(9)-C(10) \\ C(11)-C(12) \\ C(11)-C(12) \\ C(1)-C(5) \\ C(2)-C(6) \\ S(1)-C(6) \\ S(1)-C(6) \\ S(2)-C(1) \\ S(2)-C(1) \\ S(2)-C(2) \\ \end{array}$	$\begin{array}{c} 1\cdot 38(0\cdot 03)\\ 1\cdot 53(0\cdot 04)\\ 1\cdot 42(0\cdot 05)\\ 1\cdot 67(0\cdot 05)\\ 1\cdot 55(0\cdot 05)\\ 2\cdot 82(0\cdot 03)\\ 2\cdot 80(0\cdot 04)\\ 3\cdot 02(0\cdot 03)\\ 3\cdot 12(0\cdot 03)\\ 3\cdot 02(0\cdot 02)\\ 3\cdot 07(0\cdot 03)\end{array}$
(b) Within the benzotrifuroxan mol	ecule		
$\begin{array}{c} C(13)-C(14) & \dots \\ C(13)-C(18) & \dots \\ C(13)-N(1) & \dots \\ C(14)-C(15) & \dots \\ C(14)-C(15) & \dots \\ C(15)-C(16) & \dots \\ C(15)-C(16) & \dots \\ C(16)-C(17) & \dots \\ C(16)-C(17) & \dots \\ C(16)-N(4) & \dots \\ C(17)-C(18) & \dots \\ C(17)-N(5) & \dots \\ \end{array}$	$\begin{array}{c} 1\cdot45(0\cdot06)\\ 1\cdot26(0\cdot04)\\ 1\cdot42(0\cdot03)\\ 1\cdot35(0\cdot03)\\ 1\cdot35(0\cdot03)\\ 1\cdot48(0\cdot04)\\ 1\cdot56(0\cdot04)\\ 1\cdot56(0\cdot04)\\ 1\cdot39(0\cdot05)\\ 1\cdot39(0\cdot05)\\ 1\cdot30(0\cdot03)\\ 1\cdot48(0\cdot03)\\ 1\cdot26(0\cdot03)\\ 1\cdot26(0\cdot03)\\ \end{array}$	$\begin{array}{c} C(18) - N(6) & \dots & \\ N(1) - O(1) & \dots & \\ N(2) - O(2) & \dots & \\ N(3) - O(2) & \dots & \\ N(3) - O(2) & \dots & \\ N(3) - O(3) & \dots & \\ N(4) - O(4) & \dots & \\ N(5) - O(4) & \dots & \\ N(6) - O(6) & \dots & \\ N(6) - O(6) & \dots & \\ \end{array}$	$\begin{array}{c} 1{\cdot}52(0{\cdot}05)\\ 1{\cdot}29(0{\cdot}03)\\ 1{\cdot}52(0{\cdot}04)\\ 1{\cdot}33(0{\cdot}04)\\ 1{\cdot}16(0{\cdot}05)\\ 1{\cdot}11(0{\cdot}05)\\ 1{\cdot}34(0{\cdot}04)\\ 1{\cdot}47(0{\cdot}03)\\ 1{\cdot}22(0{\cdot}04)\\ 1{\cdot}37(0{\cdot}03)\\ \end{array}$
(c) Between benzotrifuroxan and 13	,14-dithiatricyclo[8·2,1	,1 ^{4,7}] tetradeca-4,6,10,12-tetraene	
$\begin{array}{c} S(1)-C(18) \dots \\ S(2)-O(6) \dots \\ C(1)-C(14) \dots \\ C(3)-C(15) \dots \\ C(3)-C(16) \dots \\ \end{array}$	3·46 3·41 3·26 3·31 3·20	$\begin{array}{c} C(4) - C(16) & \dots \\ C(6) - O(5) & \dots \\ C(7) - C(18) & \dots \\ C(8) - N(6) & \dots \end{array}$	3·39 3·41 3·17 3·41

Figure 5. The standard deviation in angles according to the formula of Darlow⁸ vary between 1 and 3° .

The crystals are made up of isolated molecules of DTTD and benzotrifuroxan (I), stacked plane-to-plane with their planes approximately parallel to the (101) plane of the crystal (Figures 1 and 2).

The DTTD molecule has the step-like (C_{2h}) configuration suggested by Winberg *et al.*⁴ The molecule is only approximately centrosymmetric. It is essentially similar to di-*m*-xylylene or di-*p*-xylylene.

All the bonded contacts have the expected lengths within the experimental error of the determination, but the planar systems are considerably distorted. Each thiophen ring is boat-shaped, and the carbon atoms bonded to the ethylene bridges are about 0.08—0.10 Å from the plane of the remaining three atoms of each ring. The least-squares best planes through each thiophen ring are almost exactly parallel (Figure 3). The contact distances of 2.80 and 2.82 Å between pairs of carbon atoms attached to the ethylene bridges are the same as those observed in di-*p*-xylylene. The sulphur-sulphur contact of 3.19 Å is about 1 Å longer than that predicted for an unstrained model, but still about 0.5 Å shorter than the expected Van der Waals contact distance. The sulphur atoms also make two short contacts of 2.99 [S(1)–C(6)] and 3.02 Å [S(2)–C(1)] with carbon atoms both considerably shorter than the sum of Van der Waals radii.

⁷ D. W. J. Cruickshank and F. R. Ahmed, Acta Cryst., 1953, 6, 385.

⁸ S. F. Darlow, Acta Cryst., 1960, 13, 683.

In general, the interatomic distances in the benzotrifuroxan molecule are in rather poor agreement with expected values. In particular, one of the furoxan rings is rather different from the other two, and there is considerable variation in length of the carbon bonds in the benzene nucleus. It is perhaps noteworthy that Britton and Noland⁹ found unexpected ring-carbon distances in a chlorobenzofuroxan. Certain general tendencies can be seen: first, in general, the carbon-carbon bonds within the furoxan rings are rather shorter than those outside the rings. The ring oxygen atom is not equidistant from the two nitrogens, to which it is linked, but is closer to that not attached to the peripheral oxygen atom. The two nitrogen-carbon bonds are not equal in length. The bond

FIGURE 3. In (I) two 13,14-dithiatricyclo[8,2,1,1^{4,7}]tetradeca-4,6,10,12-tetraene molecules are projected perpendicular to the least-squares best plane of the benzene nucleus of the benzotrifuroxan molecule. The relationships between the two thiophen rings, A and B, of the 13,14-dithiatricyclo[8,2,1,1^{4,7}]tetradeca-4,6,10,12tetraene molecules and the benzotrifuroxan are shown in (II) and (III), respectively

between the carbon atom and the nitrogen atom bound to two oxygens is somewhat shorter. The most probable dimensions of the furoxan system, based on this work and that of Britton and Noland,⁸ are given in Figure 4. The carbon-nitrogen bonds are therefore essentially single bonds (cf. $Ph \cdot NO_2 1 \cdot 48$ and $Ph \cdot NHCOCH_3 1 \cdot 43$ Å). The nitrogen-

⁹ D. Britton and W. E. Noland, J. Org. Chem., 1962, 27, 3218.

oxygen bonds in the ring are of low order, the longer being essentially single, the shorter of order 1—1.5. The nitrogen-peripheral oxygen bond is of the order 1.5—2.0. Of the earlier electronic structures suggested, (IV) is impossible and structure (V) involves carbon-nitrogen double bonds. Linnett and Rosenberg ¹⁰ have suggested (VI)—(VIII) as more probable structures. Structures (VI) and VII) are unlikely, since they involve carbon-nitrogen bonds of order higher than one and suggest a carbon-carbon bond of lower order than that found in benzene. Structure (VIII) seems to have been the most satisfactory, but it does not account for the tendency of the furoxan carbon-carbon bond to be rather shorter than those not in the furoxan system. Structure (VII) suggests a more satisfactory explanation of the rather long N'-O' bond.

The benzotrifuroxan molecule is not planar, each furoxan ring being twisted slightly with respect to the best plane of the benzene nucleus (Figure 3).

In the stack of polarisation-bonded molecules, the electron-acceptor molecules, benzotrifuroxan, alternate with the donor molecules, DTTD. The donor molecule has two

FIGURE 5. Inter-bond angles

separate donor systems, namely the two thiophen rings, which are adjacent and strictly parallel. Indeed, all the planes of all the benzotrifuroxan molecules make an angle of $9\frac{1}{2}^{\circ}$ with the planes of the thiophen rings. The two crystallographically distinct rings, A and B, are differently related to the benzotrifuroxan. Ring A is more closely associated with a furoxan ring, and ring B with the benzene ring.

¹⁰ J. W. Linnett and R. M. Rosenberg, Tetrahedron, 1964, 20, 53.

EXPERIMENTAL

Preparation.—Dr. A. S. Bailey kindly supplied a sample of the adduct, prepared by the method described in 1960.¹¹ The 13,14-dithiatricyclo[8,2,1,14,7]tetradeca-4,6,10,12-tetraene was a gift from Dupont de Nemours and Co., Wilmington, Delaware.

X-Ray Photography.-The unit-cell dimensions were obtained from zero-layer Weissenberg photographs about a, b, and c axes, calibrated with the powder-diffraction pattern of a copper wire. The X-ray intensities were estimated visually from sets of multiple-film equi-inclination Weissenberg photographs about the a axis. The intensities were corrected for Lorentz and polarisation factors, and placed on a common scale by using a limited set of values collected from zero-layer Weissenberg photographs taken about the b and c axes. No absorption or extinction corrections were applied.

Calculations.-Calculations were carried out on the Ferranti Mercury electronic computer. Structure factors and rounds of least-squares were calculated by using the SFLS programme of Rollett.¹² Atomic scattering factors for oxygen, carbon, and nitrogen were those of Berghius et al.; ¹³ for sulphur, those of Dawson, ¹⁴ and for hydrogen, those of Mc Weeny.¹⁵ For Fourier synthesis Rollett's FATAL programme 6 and Mills's 12 general Fourier programme OSM 4 were used, and for interatomic distances and angles Spark's 12 programme.

We thank Dr. A. S. Bailey for preparing many molecular compounds of benzotrifuroxan for our use, The Wolfson Research Funds at the Royal Society and Professor D. Hodgkin for financial support to B. K., and the Oxford University Computing Laboratory (in particular Dr. J. S. Rollett) for computing facilities. Some of this work was carried out by C. K. P. whilst a guest of the Centro per Studio di Chimica Strutturistica in Rome.

CHEMICAL CRYSTALLOGRAPHY LABORATORY, SOUTH PARKS ROAD, OXFORD.

[Present address (B. K.): LABORATORY OF GENERAL AND INORGANIC CHEMISTRY, FACULTY OF SCIENCE, THE UNIVERSITY, ULICA SOC. REVOLUCIJE, ZAGREB, JUGOSLAVIJA.]

[Received, November 16th, 1964.]

¹¹ A. S. Bailey, *J.*, 1960, 4710.

¹² O. S. Mills and J. S. Rollett in "Computing Methods and the Phase Problem in X-Ray Crystal Analysis," Pergamon, London, 1961, p. 107.
 ¹³ J. Berghius, I. M. Haanapel, M. Potters, B. O. Loopstra, C. H. MacGillavry, and A. L. Veenendal,

Acta Cryst., 1955, 8, 478.

¹⁴ S. B. Dawson, Acta Cryst., 1960, 13, 403.

¹⁵ R. McWeeny, Acta Cryst., 1951, 4, 513.